New Path of Popularized Homogeneous Balance Method and Travelling Wave Solutions of a Nonlinear Klein-Gordon Equation

نویسندگان

چکیده

The aim of this paper is to obtain a set traveling wave solutions for klein –Gorden equation with kerr law non-linearity. More precisely, we apply new path popularized homogeneous balance (HB) method in terms using linear auxiliary equations find the results non-linear klein-Gorden equation, which fundamental approach determine competent solutions. are achieved as integration exponential, hyperbolic, trigonometric and rational functions. Besides, some demonstrated by the3D graphics.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SOLVING NONLINEAR KLEIN-GORDON EQUATION WITH A QUADRATIC NONLINEAR TERM USING HOMOTOPY ANALYSIS METHOD

In this paper, nonlinear Klein-Gordon equation with quadratic term is solved by means of an analytic technique, namely the Homotopy analysis method (HAM).Comparisons are made between the Adomian decomposition method (ADM), the exact solution and homotopy analysis method. The results reveal that the proposed method is very effective and simple.

متن کامل

Nonlinear Klein-Gordon Equation

An extended ( ′ G )–expansion method is obtained by improving the form of solution in ( G′ G )– expansion method which is proposed in recent years. By using the extended ( ′ G )–expansion method and with the aid of homogeneous balance principle, many explicit and exact travelling wave solutions with two arbitrary parameters to the Klein-Gordon equation are presented, including the hyperbolic so...

متن کامل

Analytical solutions for the fractional Klein-Gordon equation

In this paper, we solve a inhomogeneous fractional Klein-Gordon equation by the method of separating variables. We apply the method for three boundary conditions, contain Dirichlet, Neumann, and Robin boundary conditions, and solve some examples to illustrate the effectiveness of the method.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Iraqi journal of science

سال: 2022

ISSN: ['0067-2904', '2312-1637']

DOI: https://doi.org/10.24996/ijs.2022.63.6.31